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We report on a numerical simulation study of dynamic fracture in strip-shaped plates in which we implement
a fracture criterion that fully respects mode-I symmetry. The crack dynamics is studied as a function of the
length of the initial notch. The cracks show accelerated straight motion until branching appears. We show that
branching can be triggered by two different mechanisms: namely, the kinematics of the strain field and
back-reflected surface waves traveling on the crack lip. We also propose a qualitative explanation for the
kinematic branching mechanism in terms of the effects of the lattice discretization on Yoffe’s stress field. The
kinematic branching mechanism is understood by analyzing the disconnection times of the nodes ahead and
aside of the crack tip.
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I. INTRODUCTION

The understanding of how materials break apart under
external loads is a subject that has attracted the attention of
scientists and engineers for a long time. The problem has
obvious relevance from a technologicalsresistance of mate-
rials and safetyd as well as environmentalsearthquake activ-
ity and seismic hazardd points of view. From a physical per-
spective, this problem is interesting because of the
complexity of its dynamics, in which singularities appear and
many different length and time scales are involved. Further-
more, the complex fracture patterns that may appear in ex-
periments have strong resemblances with other pattern for-
mation processes much studied, such as diffusion limited
aggregationf1g, dielectric breakdownf2g, and percolation
f3,4g.

Different fracture mechanisms may appear depending on
some features of the materials. A first classification separates
materials into two classes according to the predominant frac-
ture mechanism. Brittle materials behave as elastic solids
until the fracture threshold is reached. Ductile materials
show plastic deformation, and dislocation motion plays an
essential role in the dynamics. In this paper we will focus on
brittle fracture dynamics.

Linear elastic fracture mechanicsf5,6g assumes that at the
tip of the crack there is a stress singularity with a radial
dependence such as 1/Îr. This singularity is characterized
by a coefficient named the stress intensity factor, which, for
obvious safety reasons, has been the main concern in engi-
neering fracture mechanics. From this point of view, modern
numerical techniques that include a properly implemented
cohesive zone at the crack tip give satisfactory predictions
about stress intensity factorsf7g.

In the last quarter of the 20th century modern experimen-
tal and computational equipment made dynamic fracture a
suitable subject of studysfor an extensive review of experi-
mental results see, for instance, Ref.f8gd. In a series of pa-

pers Ravi-Chandar and Knaussf9g studied the relationship
between crack tip speed and the surface roughness at the
crack lip, stating the well-known classification of mirror,
midst, and hackled zones according to the amplitude of the
surface irregularities. More recently, extensive experimental
work on glass and PMMAf8g has shown the important role
that mechanisms such as acoustic emissionf10–12g, wave
reflectionf13g, and branchingf14g may have on the dynami-
cal behavior of cracks.

From a dynamical perspective, however, many aspects
concerning crack motion are still the subject of debate, and
some of the open questions concern the mechanisms limiting
the speed of a moving crack. According to the theoretical
predictions for brittle linear elastic solids, the speed of a
crack tip in straight motion should be ruled by the balance
between the elastic energy flow towards the crack tip and the
energy dissipated in creating crack lip surface. Under this
assumption, the maximum speed in straight crack motion
should be the Rayleigh surface wave speedVR f5,6g. Never-
theless, the experimental studies of crack propagation show a
rich and complex phenomenology. Regarding experiments
carried out with PMMAsa material that shows brittle behav-
iord it has been found that there are no fractures propagating
at a velocity lower than 0.18VR or higher than 0.7VR f10,12g.
Moreover, when the crack speed exceeds a critical value of
about<0.4VR, oscillations of the tip speed appear and acous-
tic emission takes placef11g.

Acoustic emissionf10–12g and branchingf14g have been
proposed as mechanisms limiting the crack tip velocity.
Wave emission has been recently studied in two different
discrete modelsf15,16g. Their results show that at low crack
speeds surface wave radiation dominates, while at high crack
speed bulk wave radiation doesf15g, and that surface wave
radiation can be a very efficient energy dissipation mecha-
nism at speeds in which resonance occursf16g.

Furthermore, even the mechanism causing branching is
not fully clear. Most of the discussion about the branching
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mechanism starts from Yoffe’s asymptotic solution for the
stress field around a moving crackf17g. Yoffe’s solution al-
lows for different qualitative interpretations of branching
f5,6g, based on either the lateral maximum that develops in
the angular dependence of the hoop stress or the changes in
the angular dependence of the highest eigenvalue of the
stress tensor at the crack tipf18g. To our knowledge there are
no conclusive data from either experiments or simulations
that favor any of these interpretations.

Moreover, the value of the branching angle seen in experi-
ments, which is typically in the range between 10° and 20°
f8g, cannot be explained on the basis of Yoffe’s asymptotic
solution. Only recently have there been some predictions of
the value of the branching angle under general loading con-
ditions f19g.

From a theoretical point of view, the coupling of the equa-
tions of linear elasticity and the boundary conditions, to-
gether with the singularity present at the crack tip, makes the
problem quite difficult to treat. In spite of the difficulty of the
problem, many theoretical results have been achieved mostly
related to static or straight advancing cracks. However, dy-
namic cracks with complex patterns are still far away from
the current state of theoretical work. In this sense, numerical
simulations offer a way to get some insight into the complex
features of fracture dynamics without solving analytically the
whole problem. Many different simulation schemes have
been proposed, and a good account of different approaches
can be found in Ref.f20g. Large multiscale molecular dy-
namics simulationsf21,22g can be implemented in nowadays
top-level computing facilities. Suitable medium-scale lattice
simulationsf16,23–27g are still useful in order to study dy-
namic fracture from a fundamental point of view, though.

In numerical simulations of dynamic fracture, apart from
specifying the force law that acts between material points, it
is necessary to decide when a portion of material will break
apart; that is, one essential ingredient of the problem is the
so-calledfracture criterion. Many fracture criteria have been
proposed in the literature, most of them relying on some
form of bond cutting scheme. This poses an additional prob-
lem because the singularity being at the tip, the superposed
effect of the lattice topology right at the tip, and the way the
bond cutting is implemented can dramatically affect the dy-
namics of the crack. This has been shown most clearly in our
previous workf25g in which we demonstrated that an asym-
metry in the crack tip induced by the bond cutting procedure
creates an important mode-II component in a plate configu-
ration that was supposedly formulated for mode-I loading.

The purpose of the present paper is threefold: first, to
propose a fracture criterion that, in the same conditions
stated in our previous paperf25g, yields a fully symmetric
mode-I loadingsbasically, the fracture criterion is as follows:
one lattice node will be disconnected from its neighbors if
the maximum eigenvalue of the strain tensor at this node
overcomes a certain threshold valued, second, to study the
changes in fracture pattern and dynamics depending on the
length of the notch practiced on the plate, and third, to
present a study of the branching instabilities appearing in the
simulations. In this aspect, we show that two different
branching instabilities may occur: one of them can be ex-
plained in terms of the kinematics of the strain tensor field of

a Yoffe solution in a discrete medium; the other is induced by
the arrival at the crack tip of a surface wave pulse, generated
at the moment that crack motion starts, after being reflected
at the upper boundary of the plate.

This paper is organized as follows: in Sec. II we present a
brief overview of the discretization method of the elastic
wave equations as well as a description of the fracture crite-
rion and the simulation procedure. In Sec. III we report the
simulation results concerning the static strain field and its
dependence on notch length. In Sec. IV we show a detailed
study of the fracture dynamics, including pattern structures,
kinematics, and branching phenomena. In Sec. V we propose
a qualitative explanation of the branching mechanism based
on the kinematics of the strain tensor. Finally, a discussion of
the results and conclusions are presented in Secs. VI and VII,
respectively, including some proposals for future work.

II. MODEL AND GENERAL METHODOLOGY

The discretization method has been fully described in Ref.
f25g. For the sake of completeness we briefly outline here the
general framework and the final formulation of the simulated
equations. The equations of elasticity that govern the dis-
placement fieldusr ,td in a homogeneous linear material sub-
ject to small deformations aref5g

üsr ,td = c'
2 ¹2usr ,td + sci

2 − c'
2 d = s= ·udsr ,td, s1d

where the transversec' and longitudinalci sound speeds are
material properties related to Young’s modulusE and Pois-
son’s coefficientn. In the case of plane strain, as corresponds
to the situations here considered, the expressions of the
transverse and longitudinal wave speeds are, respectively,

c' = S E

2rs1 + ndD
1/2

,

ci = S Es1 − nd
rs1 + nds1 − 2ndD

1/2

, s2d

wherer is the mass density of the material. For the purposes
of this study the Rayleigh surface wave speed may be ap-
proximated by the expressionf28g

VR < c's0.874 + 0.162nd. s3d

On the other hand, the discretization method reported in Ref.
f25g yields the following expression, for the case of a trian-
gular lattice:

üistd = Fc'
2 − ci

2/3

a2 Go
j=1

6

su j − uid +
4sci

2 − c'
2 d

3a2

3o
j=1

6

su j − uid · r̂ ji
0 r̂ ji

0 , s4d

wherea is the lattice spacing andr̂ ji
0 is the undeformed lat-

tice vector joining particlesj and i. These equations can be
interpreted as the equations of motion for a set of portions of
material of unit mass in a lattice, interacting with their near-
est neighbors with a linear law of force. The main advantage
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of this formulation is that it allows for a numerical simula-
tion to be implemented by means of molecular dynamics
algorithms.

It is worth noting that the above discrete model coincides
with the Born modelf29g, usually characterized by the po-
tential energy

V =
1

2
bo

i j

fui − u jg2 +
1

2
sa − bdo

i j

fsui − u jd · r̂ ji
0g2, s5d

wherea ,b are model constants. Consequently, the force on
particle i is given by

Fi = −
]V

]ui
= bo

i j

su j − uid + sa − bdo
j

su j − uid · r̂ ji
0 r̂ ji

0 .

s6d

It can be seen that both expressions of the force law have
the same two terms, the first one being a restoring force and
the second an anharmonic term. This resemblance allows for
a determination of the constantsa andb of the Born model
in terms of the material properties.

The strain tensor is defined asg= 1
2f=u+ =uTg. This ex-

pression can be readily translated to the discretized lattice,
and one obtains for the strain tensor defined at each lattice
node

gi =
1

6a
o

j

sui − u jdr̂ ji
0 + r̂ ji

0sui − u jd. s7d

For latter reference, a direct translation of the continuum
formula to this case yields the expression of the stress tensor
si at the nodei in terms of the strain tensor according tof28g

si =
E

1 + n
Sgi +

n

1 − 2n
tr gi1D . s8d

As the strain tensor is the primary result of the simulation,
the whole discussion of the results reported in this paper has
been made of the strain tensor.

A last comment on the discrete model is in order here: as
stated in Ref.f25g, the discretization here presented is
equivalent to a first-order finite-difference spatial scheme;
hence, the stability of the algorithm depends on the actual
parameter values. In this case, the scheme is unstable for
n.0.25; this particular value of the Poisson’s coefficient is
the one at which the coefficient of the linear spring force in
Eq. s4d changes sign. This problem can be eliminated by
reformulating the model by considering also the next-
nearest-neighbor interactionf30g.

A. Fracture criterion

The fracture criterion is a crucial ingredient for the simu-
lations of crack dynamics. The simplest physical representa-
tion of the breaking process is that the interaction between
two points of the material will vanish if they are tonn apart
more than a given threshold distance. This is usually imple-
mented in terms of amost-stretched bond rule. In dynamic
crack simulations, this is readily carried out by setting a

given strain threshold; therefore, the bond that will overcome
that threshold will break. This criterion has been imple-
mented, for instance, in Refs.f25,27g and others.

However, the use of this criterion shows local effects,
such as lattice trapping or an alternating mode-II perturba-
tion f25g, making it difficult to analyze the shape and dynam-
ics of the tensor fields obtained from the simulationsf25,27g.
Moreover, in simulations where the strain is imposed normal
to one of the triangular lattice directions, oblique branches
always leave unbroken bonds parallel to the unstrained lat-
tice direction.

For those reasons, we propose a different fracture crite-
rion implemented not on the bonds connecting two portions
of material, but on the nodes themselves. The formulation of
the criterion is as follows: when the maximum eigenvalue of
the strain tensor at a mesh node,gi

+, exceeds a given thresh-
old valuegc

+, the interaction between the node and its neigh-
bors is assumed to vanish, and the crack propagates through
the “void” created. This criterion closely resembles the one
used in Ref.f16g or those based on “phase field” descriptions
f26g.

This formulation of the fracture criterion has several ad-
vantages. First, it fully respects the symmetry with respect to
the crack line, in straight propagating cracks. Therefore, the
simulations here presented are completely free of the alter-
nating mode-II perturbations that appeared in our previous
work f25g. Second, as we will later highlight, it considerably
decreases lattice trapping. No unbroken bonds are left in ob-
lique branches. Finally, working with the strain tensor in-
stead of the stress tensor makes unnecessary additional as-
sumptions on the relationship between the deformation
tensor and the stress tensor for the material described by the
discretized equations.

B. Simulation procedure

Equations4d has been simulated with a conventional mo-
lecular dynamics code using Verlet’s algorithmsi.e., a cen-
tered difference in timed f31g. This is an explicit method in
the terminology of finite-difference simulations. The units
chosen are the lattice spacinga for spatial coordinates and
the Rayleigh wave speedVR for velocities. Consequently, the
time unit isa/VR.

We have studied mode-I fracture of finite two-
dimensionals2Dd rectangular plates of dimensionsLx3Ly
containing an initial sharp notch of lengthLn that can be
adjusted at will. The notch is located in the middle of the
plate and is made by cuttingn transversal bonds in the two
central columns starting from the upper boundaryssee Fig.
1d. Note that the selected configuration is, therefore, fully
symmetric with respect to the middle vertical plane, and,
consequently, if properly simulated, the dynamics should be
free of any mode-II perturbations.

For further reference we also show the detailed structure
of the nodes close to the tip in Fig. 2, where we have labeled
the nodes close to the tip in the following way:P0 is the node
that was last “disconnected,”P1 is the node that should be
next disconnected if straight propagation occurs, andP2 are
both the two lateral nodes that should be disconnected if
branching occurs.
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Typically, plates of 80 000 nodes are studied. The plate is
subject to a mode-I deformation by displacing the nodes of
the right wall a fixed distanceDLx in the x direction. The
plate is left to equilibrate until the stationary stress field cor-
responding to the given geometry is reached. During this
equilibration time, a damping force is applied to each node in
order to speed up the equilibration process and get rid of all
of the waves excited due to the application of the deforma-
tion. The equilibration time is several times longer that the
time required by sound waves to travel back and forth
through the plate. The evolution of the equilibration process
was monitored through the evolution of the highest eigen-
value of the strain tensor at the notch tip,g0

+. The plate was
considered to be in equilibrium when the time variation ofg0

+

was smaller than ±0.001 in the selected units. In this way, we
are starting the simulation with all nodes at rest effectively
reproducing the experimental conditions of quasiestatic load-
ing before fracture initiation.

The simulations have been performed at a given nominal
deformatione=0.01. We have adjusted the critical strain by
computing the strain tensor at each mesh node. Once the
notch is “cut” and the plate is equilibrated, we compute, at
each node, the eigenvalues of the strain tensor, which we
label gi

+ and gi
−. Then we find the nodei, which has the

highest value ofgi
+, and this value is set asgc

+; in all cases,
the node with the highestgi

+ was the node at the tip of the
notch, so thatgc

+=g0
+st=0d. When the equilibration process is

finished and the breaking strain thresholdgc
+ is set equal to

g0
+st=0d, the crack starts propagating. During the simula-

tions, the nodes that went above threshold were “discon-
nected” from their neighbors by removing them from the
Verlet’s neighbor listf31g. Note that this implementation pre-
cludes the possibility of surface recombinationf32g.

The time step had to be adjusted depending on the spatial
resolution of the simulation. The procedure used to adjust the
time step was to perform a series of simulations at a given
spatial resolution and to diminish the time step until no
change in the crack dynamics, both including kinematics and
fracture patterns, occurred. In all of the simulations reported
in this work the time step wasdt=0.002 for plates with
Lx=100Î3 andLy=400 sin the selected unitsd. The Poisson
coefficient has been set to a valuen=0.25, so that the corre-
sponding values of the transversal and longitudinal wave
speeds arec'=1.0935 andci=1.894, respectivelysthe Ray-
leigh wave speed isVR=1d. Some other simulations have
been carried out with different values ofn, in particular with
n=0.2; the dynamics observed is similar to that presented in
this paper.

The simulations of the crack dynamics start whengc
+ is set

equal tog0
+st=0d. Then the node at the notch tip,P0, is “dis-

connected” at the first time step, and the subsequent evolu-
tion of the strain field as well as the wave propagation along
the crack edge makes the crack to advance.

III. STATICS

We have conducted a series of simulations in which the
effect of Ln on the dynamics of crack propagation is studied
systematically. The notch length determines the level of
stress of the landscape on which the crack propagates and it
is usually the way in which this effect is investigated experi-
mentally.

In Fig. 1 we show a plate in which the lattice is oriented
with a lattice direction along the vertical axis; the notch is
also oriented in the direction of the vertical axis, and the
plate is strained in the direction of the horizontal axis.

The dependence ofgc
+ on Ln is shown in Fig. 3. Open

symbols represent the actual value ofgc
+ obtained directly

after the equilibration process, at each value ofLn. Figure 3
shows a strong increase ofgc

+ at short notch length and a
saturation for long notches at a value that we labelgsat.
These results can be cast in a different way that allows for
closer comparison with experiments: in experiments carried
out with plates made of the same material, one may expect
that gc

+ should be a property of the material and, therefore,
independent ofLn. Hence, one may think in terms of the
equivalent straineeq that should be imposed externally for
plates with different initial notches to break at the same value
of gc

+. Due to the linear dependence one, this can be readily
calculated taking as a reference the value ofgc

+ for the long-
est notch,gsat—i.e., eeqsLnd=egsat/gc

+sLnd. The calculated
values foreeqsLnd are plotted in Fig. 3 as solid symbols. The
result is physically sound, in the sense that the shorter the

FIG. 1. Triangular lattice with a symmetric notch located in the
middle of the plate, beginning from the upper free boundary. The
dimensions of the plate shown areLx=17.3,Ly=10. The length unit
is the lattice spacinga.

FIG. 2. Detailed structure close to the crack tip.S is the effec-
tive position of the singularity,P0 is the last disconnected node,P1

if the next node to be disconnected if straight propagation occurs,
andP2 are the nodes to be disconnected if branching occurs.
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notch, the higher the strain needed for the crack to start mov-
ing. Qualitatively speaking, the saturation ofgc

+ at long notch
length means that the strain field close to the crack tip does
not feel anymore the upper free boundary of the plate; i.e.,
the static strain field at long notches should correspond to the
case of an infinite strip. Conversely, for a shorter notch
length, the static strain field approaches the configuration
corresponding to a semi-infinite strip. This interpretation can
be put in a more quantitative way by looking at the strain
field close to the crack tip.

Actually, close to the tipsi.e., at distances sufficiently
smaller than the strip widthd, the static stress field should
approach the zero-velocity limit of the Yoffef17g solution for
a moving crack in an infinite continuous linear elastic me-
dium under mode-I loading. This null velocity limit coin-
cides with the well-known Irwin-Williams fieldf5,6g. Ac-
cordingly, the static stress field can be represented as

si jsr,ud =
KI

Î2pr
Si j

I sud + si j
s1d, s9d

where si j
s1d must be a diagonal tensor to comply with the

symmetry requirements of mode-I loading. Bothsyy
s1d, which

depends on the crack face traction, andsxx
s1d must be com-

puted specifically for each particular deformation problem;
moreover,syy

s1d should be higher thansxx
s1d. The elements of

the tensor that reflects the angular dependence of the
asymptotic field,Si j

I sud, are

Sxx
I sud = cos

u

2
F1 − sin

u

2
sin

3u

2
G ,

Syy
I sud = cos

u

2
F1 + sin

u

2
sin

3u

2
G ,

Sxy
I sud = cos

u

2
sin

u

2
cos

3u

2
. s10d

Then, the strain tensor can be recovered from the classical
relationships between strain and stress in the case of plane

strain. A full comparison between the spatial structure of the
expressions above with the results of the simulations is be-
yond the scope of this work. Instead, we will just compare
the spatial structure ofg+—that is, the quantity governing the
crack motion—with the corresponding results of the simula-
tions. For this purpose it is better to decouple the radial and
angular dependences ing+. This can be done focusing, on the
one hand, on the radial dependence ofg+ at points such that
u=0 and, on the other hand, on the angular dependence ofg+

at points located at fixedr. Concerningg+sr ,u=0d, it is easy
to see thatSi j

I su=0d is just the identity matrix, so that

g+sr,u = 0d = gyy

=
1 + n

E Fs1 − 2nd
KI

Î2pr
+ s1 − ndsyy

s1d − nsxx
s1dG .

s11d

Conversely, forg−sr ,u=0d, we get

g−sr,u = 0d = gxx

=
1 + n

E Fs1 − 2nd
KI

Î2pr
+ s1 − ndsxx

s1d − nsyy
s1dG .

s12d

Consequently, foru=0, both eigenvalues show the same ra-
dial dependence: namely, a singular term with the same mul-
tiplicative constant, plus an additive constant term, which is
different for each eigenvalue. Therefore, fitting the curves of
g+sr ,u=0d and g−sr ,u=0d to such a dependence would al-
low us to determineKI, sxx

s1d, andsyy
s1d. Such a fitting process

must take into account that strain atP1 is finite and, there-
fore, the singularity should be considered lagging behindP1
by a distancer0.

Linear-logarithmic and logarithmic-logarithmic plots cor-
responding tog−sr ,u=0d and g+sr ,u=0d for Ln=100 are
shown in Figs. 4, 5, 6, and 7, respectively, where the radial
coordinate is referred toP0; i.e., the radial position with re-
spect toP0 will be r8=r +1−r0. The solid lines represent fits
to the expressions

FIG. 3. Notch length dependence of breaking strain threshold
sopen symbolsd and the equivalent externally imposed strainssolid
symbolsd. In the vertical axis, magnitudes are dimensionless, while
Ln is in units of lattice spacing.

FIG. 4. Linear-logarithmic plot of the radial dependence ofg− in
the direction of straight crack propagation. The line corresponds to
the fit to expressions13d. Magnitudes are in the selected units.
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g+sr8,u = 0d =
c1

Î2psr8 + r0 − 1d
+ c2,

g−sr8,u = 0d =
c1

Î2psr8 + r0 − 1d
+ c3. s13d

Let us first comment on the behavior ofg−sr ,u=0d. It is
apparent from Figs. 4 and 5 that the fit to the expression
above is excellent but for the three positions located close to
the tip. Hence, one can distinguish two regions with different
behavior: at short distances,g−sr ,u=0d separates from the
expected Irwin-Williams solution, while at intermediate and
long distances the fit to the Irwin-Williams solution in Eqs.
s13d is rather good, yieldingc1=0.062, r0=1.63, and
c3=−0.0033. The good quality of the fit at intermediate and
long distances is probably due to the fact that the eigenvector
corresponding tog−sr ,u=0d is parallel to the direction of
straight propagationsu=0d and, in that direction, the effect
of the plate boundaries is very small.

In Figs. 6 and 7 we show linear and logarithmic plots of
g+sr ,u=0d. In this case three different regions can be appre-

ciated. First, the region at short distances from the tip
sr8&6d in which the prevalence of the singular term allows
for a good fit to just the singular term in Eq.s13d si.e., with
c2=0d to be made. In this region the effects of the lattice
topology are important, and the values obtained for constants
c1 andr0 are different from those obtained from the fit of the
g−sr ,u=0d curve. Nevertheless, the best fit in this region
yields c1=0.081,r0=0.27.

Second, a long-distance regionsr8*16d in which nonsin-
gular contributions due to the constant displacement bound-
ary conditions dominatef34g. Third, there is an intermediate
regions6& r8&16d in which a fit to Eq.s13d gives values of
c1 and r0 coinciding with those obtained from the fit of the
g−sr ,u=0d curve, so that c1=0.062, r0=1.63, and
c2=−0.0041.

Figures 4, 5, 6, and 7 show that at very short distances
from the crack tip the strain values deviate from the trend
observed at somewhat deeper points inside the plate. This is
not surprising because, close to the tip, the local geometry of
the latticestriangular unit cell;P1, P2, andP3 have only five
neighborsd should have important effects. Indeed, one can
argue that the lack of bond between lattice siteP0 and sites
P1, P2, andP3 is the most relevant aspect of local tip geom-
etry as far as the radial dependence of strain field in the
direction of straight propagation is concerned. Actually, Figs.
4 and 5 show thatg−sr ,u=0d—i.e., gxx—is positive close to
the tip and, therefore, the lattice bonds are stretched in thex
direction. However, the two bonds that are closer to the crack
tip are less stretched in thex direction than the following
ones. Obviously, this happens because once theP0P1 bond is
removed, the node atP1 is more free to approach the follow-
ing point ahead of the tip and, then, the strain in thex direc-
tion decreases. This decrease penetrates roughly two or three
lattice spacings inside the uncracked zone.

A parallel argument can be constructed forg+sr ,u=0d:
once the bondsP0P2 and P0P3 are removed, part of their
corresponding strain in they direction is transferred to the
bondsP1P2 and P1P3 and, therefore, the strain in they di-
rection should increase. Again, this increase penetrates
roughly two or three lattice spacings inside the uncracked
zonessee Figs. 6 and 7d. It is conceivable that this strain field
behavior sdisagreement with linear elasticity results very

FIG. 5. Double-logarithmic plot of the radial dependence ofg−

in the direction of straight crack propagation. The line corresponds
to the fit to expressions13d. The values ofg− have been rescaled by
a factor 105 for axes labeling purposes. Magnitudes are in the se-
lected units.

FIG. 6. Linear-logarithmic plot of the radial dependence ofg+ in
the direction of straight crack propagation. The line corresponds to
the fit to expressions13d in the intermediate radial range.

FIG. 7. Double-logarithmic plot of the radial dependence ofg+

in the direction of straight crack propagation. The line corresponds
to the fit to expressions13d in the intermediate radial range.
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close to the tipd should appear in all fracture lattice models in
which the fracture criteria are based on bond cutting proce-
dures that result in diminishing the number of bonds at the
crack tip. The penetration depth of this effect might be model
dependent, though.

With the values of the constants obtained from the two
radial fits corresponding to the intermediate region described
above, the full spatial structure of the tensorial strain field
can be recovered. In Fig. 8 we show a contour plot of the
two-dimensional structure ofg+sr ,ud, in which solid and
dashed lines correspond, respectively, to the numerical re-
sults and the Irwin-Williams solution with parametersr0, c1,
andc2 as obtained from the previous fits for the intermediate
range of the radial coordinate. In this plot, each pair of solid
and dashed lines corresponds to the same contour level. The
differences between consecutive contour levels are about
10% of the level value; therefore, the differences at each
level between the numerical and analytical values are smaller
than 5%. Hence, the agreement between the spatial structure
obtained in the simulation results and the Irwin-Williams so-
lution is remarkable. An aspect of the static strain field which
is of primary importance for the crack dynamics is the influ-
ence ofLn on the radial structure ofg+su=0d. In Fig. 9 we
plot g+sr ,u=0d, at different values ofLn. The most salient
feature of this figure is that the strain field gets flatter the
shorter the notch. Actually, decreasing the notch length
makes the structure of the singularity less visible.

Casting these curvesssee Fig. 10d in terms of plates
breaking at the same value ofg+, as was done above for the

analysis of Fig. 3, would result in all curves having the same
value at the lowestr and shifting upwards the rest of the
curves; this shift will be higher the shorter the notch.

For large values ofLn, the curves superpose rather well,
which suggests that for long notches the strain field structure
ahead of the crack tip does not feel the existence of the upper
free boundary of the plate, so that the situation corresponds
effectively to a crack in an infinite strip.

IV. DYNAMICS

A. Fracture patterns

In Figs. 11 and 12 we show the spatial patterns obtained at
increasing values ofLn. Some common features can be rec-
ognized in them: the cracks propagate in a straight line, until
branching occurs. The length of straight propagation part is
larger for increasing values ofLn as shown in Fig. 13; we
will show below that this fact is connected with the accel-
eration of the crack, which is smaller the longerLn. The
constant value of the straight crack length at large notch
length confirms the close correspondence of that situation to
the case of an infinite strip.

The complexity of the crack pattern increases asLn de-
creases, showing more branches which survive longer and

FIG. 8. Two-dimensional contour plot ofg+ in the intermediate
radial range, for a static crack in a plate withLn=100. Solid lines:
simulation results. Dashed lines: reconstructed from the Irwin-
Williams solution with the values of the parameters taken from the
fits of the radial dependences ofg+ andg−. The unit length in both
axes is the lattice spacing.

FIG. 9. Comparison of the radial dependences ofg+su=0,v
=0d for plates with two different initial notch lengths.

FIG. 10. Comparison of the radial dependences ofg+su=0,v
=0d for plates with two different initial notch lengths. Curves have
been rescaled in the ordinate axis to mimic plates breaking at the
same breaking strain threshold.
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that show further branching events. This increased branching
at low values ofLn can be qualitatively understood in terms
of the strainsor stressd field. For shorter notches, the rel-
evance of the notch is smaller and the strain field becomes
increasingly flatf33g; i.e., the plate is more evenly strained in
the sense that the differences in strain across the plate are
smaller and, therefore, all of the nodes are closer to the dis-
connection threshold than in a long-notched plate. When the
crack motion starts, waves propagate into the plate and along
the crack lips. It has been arguedf13g that such waves, after
reflection at the plate boundaries, might trigger branching at
the crack tip. In the simulations reported here such a mecha-
nism might appear as follows: the reflected waves cause per-
turbations of the strain field that may help to overcome the

breaking threshold at positions out of the local direction of
straight propagation, giving rise to branching. This mecha-
nism may be particularly relevant in the case of moderately
flat strain fields, such as those appearing at low values ofLn.

We have checked the time of arrival of bulk waves and
Rayleigh waves to the advancing crack tip in all of the simu-
lations here considered. The labels in Table I refer to the time
at which the first branching event occurs in the simulations,
tb1
sim, the time of arrival to the position at which branching

occurs of a longitudinalsrespectively transversald wave gen-
erated in the first disconnection event reflected at the upper
boundary,ti

u srespectively,t'
u d, the time of arrival to the po-

sition at which branching occurs of a Rayleigh wave gener-
ated in the first disconnection event reflected back at the

FIG. 11. Fracture patterns ob-
tained in plates with short initial
notches. The simulation is stopped
when a symmetric pair of cracks
arrives at the bottom end of the
plate. The unit length in both axes
is the lattice spacing.

FIG. 12. Fracture patterns ob-
tained in plates with long initial
notches. Simulations are stopped
long time after crack arrest occurs.
The inset shows attempted
branching. The unit length in both
axis is the lattice spacing.
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upper boundary,tR
u, and the time of arrival to the position at

which branching occurs of a longitudinalsrespectively, trans-
versald wave generated in the first disconnection event re-
flected at any of the lateral boundaries,ti

l srespectively,t'
l d.

The results quoted in Table I show that, in all of the cases,
the first branching event is not coincident with the arrival of
any of the waves considered—namely, longitudinal and
transversal waves reflected at either the upper or lateral sur-
faces of the plate and Rayleigh waves reflected at the upper
surface.

Interestingly enough, the second branching event occur-
ring in the cases of low values ofLn coincides, within the
simulation error, with the arrival of the Rayleigh wave gen-
erated at the first disconnection event to the crack tip after
reflection at the upper surface of the plate. This is shown in
Table II, wheretb2

sim refers to the time at which the second
branching event occurs in the simulations andtR

u refers now
to the time of arrival to the position at which the second
branching event occurs of a Rayleigh wave generated in the
first disconnection event reflected back at the upper bound-
ary.

At large values ofLn, only one branching event occurs.
The two branches separate initially, but after some time they
get oriented parallel to the initial notch. In all of these cases,
crack arrest occurs simultaneously for both parallel running
cracks. Obviously, the energy flow towards the crack tips is
not enough to support the motion of two parallel running
cracks. Note that symmetry with respect to the notch line is
fully preserved during the whole crack propagation process
even in the most complex patterns here obtained, showing
the quality of the simulations carried out with the fracture
criterion here proposed. In a more general case of nonfully
symmetric initial conditions or when disorder is included,
one would expect that one of the cracks would be more ad-
vanced than the other one and that only the most advanced
crack would survive.

Two other aspects of the fracture patterns are worth men-
tioning. First, attempted branching may appear, in the sense
that in some runs pointsP1, P2, andP3 may become discon-
nected at the same time step. This means that all of the three
points go above the disconnection threshold simultaneously
for that time step. In such casesssee, for instance, the pat-
terns forLn=15 andLn=60 in Fig. 11 and the inset in Fig.
12, respectivelyd the subsequent evolution does not show
branching but straight propagation again until a regular
smacroscopicd branching event occurs. The simultaneous dis-
connection at the three tip points always disappears when the
time step is decreased. Therefore attempted branching is
caused merely by insufficient resolution in the time step.
Nevertheless, the appearance of attempted branching shows
that, in some dynamical conditions, the values ofg+ at points
P1, P2, andP3 are very close to each other so that, again, a
small amount of disorder may trigger the appearance of at-
tempted branching just before macroscopic branching oc-
curs.

Second, at the shortest notch, the combined effect of the
high strain all through the plate and wave emission causes
that the fracture process can continue even after the two sym-
metrically running cracks have arrived to the bottom of the
plate. This can be seen in Fig. 14, where the simulation has
been continued after the plate is fully broken. Figure 11
shows the corresponding fracture pattern at the time that the
two most advanced symmetrically running cracks arrive to
the bottom of the plate. The comparison of these two figures
clearly shows that disconnection events still occur much af-
ter the plate is divided in three separate parts, giving rise

TABLE I. Time of arrival of bulk and surface waves at the point
where the first branching occurs as a function ofLn. tb1

sim refers to the
time obtained in the corresponding simulation. Subscriptsi, ', and
R refer to longitudinal, transversal, and Rayleigh waves, respec-
tively. Superscriptsu andl refer to waves reflected in the upper and
lateral plate boundaries, respectively.

Ln tb1
sim ti

u t'
u tR

u ti
l t'

l

5 19.622 12.4 21.5 23.5 91.7 158.8

10 29.278 21.34 37.0 40.5 92.0 159.4

15 35.834 27.5 47.6 52.0 92.1 159.6

20 41.964 34.1 59.0 64.5 92.3 159.8

30 50.508 46.7 80.9 88.5 92.6 160.4

40 56.628 58.9 102.0 111.5 92.8 160.8

60 61.198 81.3 140.8 154.0 93.1 161.2

80 63.232 102.7 177.9 194.0 93.1 161.3

100 63.454 123.8 214.4 234.5 93.1 161.3

160 65.0 208.8 361.7 395.5 93.2 161.5

TABLE II. Time of arrival of surface waves at the point where
the second branching occurs as a function ofLn. tb2

sim refers to the
time obtained in the corresponding simulation.tR

u refers to the Ray-
leigh wave traveling along the crack lip and reflected in the upper
plate boundary.

Ln tb2
sim tR

u

5 47.50 46.56

10 72.07 72.64

15 93.55 95.13

20 112.73 115.54

30 181.05 180.50

FIG. 13. Length of the straight propagation part of the crack as
a function of notch lengthLn. The unit length in both axis is the
lattice spacing.
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even to closed loops that produce some debris.

B. Kinematics of straight crack motion

1. Velocity

In order to study the velocity of the crack tip, when the
crack is in straight motion, we define the position of the tip
as the position of the breaking node at a given time. The tip
velocity is then calculated by dividing they coordinate dif-
ference by the time interval separating the last two events of
node disconnection. The time history of the velocity for the
crack tip during straight propagation, for different values of
Ln is shown in Fig. 15.

In all of the cases, the first value obtained for the crack
velocity is larger than 0.37sin units of vRd. This is in agree-
ment with observations in other simulationsf15,27,35g and
might suggest the existence of a minimal crack velocity, al-
though experimental results in PMMAf36g and single-
crystal siliconf37g seem not to support this effect. In Fig. 16
we present the crack speed evolution corresponding to the
caseLn=100 in Fig. 11, together with the same evolution
obtained in a similar plate of spatial resolution twice higher
sLx=200Î3, Ly=800,Ln=200d than in the previous pictures.
Note that, in this figure, the time axis has been rescaled for
the high-resolution platesthe time unit here isa/VR; there-
fore, doubling the number of lattice sites means halvinga
and also halving the time unitd.

Remarkably, both curves superpose rather well: the initial
velocity is slightly above 0.37; then, the velocity increases

slowly to a tip speed of about 0.4, at which a sudden increase
up to a velocity value above 0.55 occurs.

2. Acceleration

As the tip motion proceeds, its velocity shows some
ripples superimposed onto an increasing trend. The crack tip
acceleration then shows fluctuations around a roughly con-
stant value. In Fig. 17, we plot the accelerationẍstd of the
crack tip against time for the low-resolution, long-notch plate
sLx=100Î3, Ly=400,Ln=100d. Generally speaking, the val-
ues of the tip acceleration are larger the shorter the initial
notch.

The fine details can be better appreciated in Fig. 18,
where we plot the acceleration corresponding to the high-
resolution equivalent platesLx=200Î3, Ly=800,Ln=200d. In
this case both the time and acceleration axes have been res-
caled to allow for proper comparison. The initial evolution of
the acceleration in both the high- and low-resolution plates is
quite similar. However, attù20 in rescaled time units, the
acceleration shows strong fluctuations, going even negative.

The origin of the oscillations in the tip acceleration is not
completely clear, but an interpretation in terms of wave
emission at the crack tip is appealingf38g. When looking at

FIG. 14. Fracture patterns obtained in plates with a very short
initial notch sLn=5d. This is a continuation of the simulation corre-
sponding to the first pattern in Fig. 11 until no more disconnection
events occur.

FIG. 15. Crack tip velocity as a function of time for different
notch lengths. After the last time recorded, branching takes place.
Units are the lattice spacinga and the Rayleigh velocityvR.

FIG. 16. Comparison of the temporal evolution of the crack tip
velocity between similar plates with different spatial resolution. The
temporal coordinate for the high-resolution plate has been rescaled
according to the time unit chosensa/VRd.
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the acceleration curve for the high-resolution plate, one may
distinguish two time regions in which the acceleration goes
negative: namely the intervals 30ø tø40 and 50ø tø60.
Inside both time intervals the ripples in the acceleration are
much more periodic, the period at each interval being, ap-
proximately, 2.65±0.05 and 1.56±0.02 rescaled time units,
respectively. In these time intervals the values of the tip ve-
locity are 0.56±0.01 and 0.64±0.01, respectively. The com-
bination of these time intervals and tip velocities would give
effective wavelengths of 1.48±0.08s.3/2d and 1.0±0.03,
respectively. This fact points to a mechanism involving ra-
diation of waves with wavelengths that are semi-integer mul-
tiples of the lattice spacing, in qualitative agreement with the
results reported in Ref.f15g. A comparison with the results
reported in Ref.f16g is not possible though, due to the inher-
ent difference of both problems. In Ref.f16g, the crack ve-
locity is set in each run by cutting bonds at a prescribed rate
and the waves are studied by means of the displacement field
at the lip of the crack. Instead, in this work the crack velocity
is governed by the strain field dynamics and the waves emit-
ted at the disconnection events also affect the crack tip ve-
locity.

C. Branching instability

1. Velocity threshold

Branching occurs when a straight propagating crack
reaches a given speed. In Fig. 19 we plot the speed at which

branching occurs as a function of notch length. For long
notchessLn*40d—i.e., when the problems is analogous to a
crack in an infinite strip—there is a well-defined threshold
value of the branching speedVc=0.675±0.002.

This behavior is analogous to the one reported inf25g, for
the same problem with a nonsymmetrical notch, although
the value obtained for the branching speed was then
Vc=0.71±0.01. In the present study we have extended the
analysis to much shorter notches. There a strong dependence
of the branching velocity on notch length appears, reflecting
the different character of the problem, which approaches the
semi-infinite strip problem as the notch gets shorter.

2. Branch angle

Due to the triangular lattice structure, the first nodes to be
disconnected when the crack branches are always at 60°
from the straight propagation direction. The subsequent
crack evolution does not follow a lattice direction but, as can
be seen in Fig. 12, a straight line with a well-defined average
angle. We have calculated the average anglea formed by
each branch with respect to the direction of straight propa-
gation in the initial part of the branch. First, we remark that
in all of the simulations,a does not correspond to a lattice
direction. The values obtained show some scatter, as shown
in Fig. 20, although all of them lie in the range between 18°
and 24°, which compare fairly well with experimental values
f8g. Interestingly, recent theoretical work on the branching
instability under general loading predicts a branching angle
of 23.4° for an elastic solid with Poisson ratio of 0.25 by
assuming that the principle of local symmetry holdsf19g.
Similar values for the branching angle have been obtained in
a phase field model for elastic fracturef39g, in which the
principle of local symmetry is respected.

Yoffe’s asymptotic solution for the stress field around an
advancing crack has been extensively used to discuss the
branching instability. However, its direct applicability to in-
terprete a branching instability in a discrete model seems to
be dubious. Basically, two different branching criteria stem
from Yoffe’s solution. The criterion based on the maximal
hoop stress predicts branching at a critical velocity. At this
critical velocity, the branching angle is 0°f25g. Above the
critical velocity, the branching angle increases continuously

FIG. 17. Acceleration of the crack tip for a plate with
Lx=100Î3, Ly=400,Ln=100.

FIG. 18. Acceleration of the crack tip for a plate with
Lx=200Î3, Ly=800,Ln=200.

FIG. 19. Velocity threshold for branching as a function of notch
length.
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with the crack tip velocity. On the other hand, the criterion
based on the maximum eigenvalue of the stress field predicts
a branching angle close to 60° for any nonzero crack tip
velocity f5g. According to this criterion, a dynamic crack
would always branch at approximately 60° from the very
moment it starts moving. None of these criteria can account
for the observed values of the average branching angle.

V. QUALITATIVE EXPLANATION FOR THE BRANCHING
INSTABILITY

In this section we propose a qualitative explanation of the
branching instability in discrete lattices. We remark that this
is only a kinematic model; a dynamic theory should account
for the acceleration due to the energy balance close to the tip.
In this sense, the disconnection of the particles is merely a
particular energy dissipation mechanism at the tip, which
should play a role regarding the acceleration of the crack, but
not on the branching mechanism.

A. General model: Branching of a moving crack in a discrete
Yoffe’s stress field

The question, is while the singularity tip moves forward at
constant speedv, cang+sr ,vd go above threshold at pointP2

before it does at pointP1 ssee Fig. 2d? To answer this ques-
tion we will analyze a model problem: the evolution of the
Yoffe’s stress field of a crack moving at constant speed in a
triangular lattice. More explicitly, let us consider a crack
whose singularity moves at given speedv in a discrete me-
dium with the lattice structure shown in Fig. 2. Let us label
with suffix 1 the quantities referring to the particle in the
geometrical tip apex, with suffix 2 the two symmetrical ad-
jacent particles, and with suffix 0 the particle placed in the
straight propagation direction before particle 1ssee Fig. 2d.
The position of the singularity with respect to particle 0 is
r0svd. Let us also assume that Yoffe’s stress field is a reason-
able representation for the stress field at the positions occu-
pied by the particlesf17g. In all of the following the tensorial
magnitudes are always the highest eigenvalues of the corre-
sponding tensors; therefore, we drop the1 superscript, and
distances and time are made dimensionless as in the previous
sections of this paper.

First of all, one has to realize that, for Yoffe’s stress field,
the threshold condition for the highest eigenvalue of the
stress tensor reads

sYsr,u,v,td =
KIstd

Î2pr0fvstdg
SIsu,vd = sc.

The threshold valuesc is set as the value ofs+ at the
geometrical tip att=0 sand, therefore,v=0d; then,

sc =
KIstd

Î2pr0s0d
SIsu = 0,v = 0d =

KIs0dSYs0,0d
Î2pr0s0d

. s14d

The influence of the notch length should appear in the ex-
pression above as a dependence ofr0s0d on notch length and,
eventually, as slight deviations ofSsimsu ,v=0d from
SYsu ,v=0d.

Then, in the time interval of interest,r1std=r0svd+1−vt,
andu1=0, so that

s1std = sYsr1std,u1,vd =
KIstd

Î2pr1std
SYsu1,vd

=
KIstd

Î2pfr0svd + 1 −vtg
SYs0,vd. s15d

Using the threshold condition for particle 1 we get

KIstdSYs0,vd
KIs0dSYs0,0d

=Îr0svd + 1 −vt

r0s0d
. s16d

Therefore, the time at which the pointP1 would be
disconnected—namely,t1—can be obtained as

t1 =
1

v
F1 + r0svd − r0s0dS KIstdSYs0,vd

KIs0dSYs0,0dD
2G . s17d

Generally speaking, the dependence ofr0svd on velocity in a
discrete medium would be related to the stresssor straind
field dynamics. In the model problem considered in this sec-
tion, ther0svd dependence on velocity is fully determined by
the evolution of Yoffe’s stress field. In such a case, at timet1,
the distance ofP1 to the singularity must ber0svd, so that the
application of the threshold condition yields

r0svd = r0s0dS KIstdSYs0,vd
KIs0dSYs0,0dD

2

. s18d

Straightforward algebra then leads to the trivial solution
t1=1/v. On the other hand, the position of pointP2 referred
to P0 is described byssee Fig. 2d

r2std = Îssinuld2 + fr0svd + 1 −vtg2, s19d

whereul =p /3 for a triangular lattice and

u2std = arctan
sinul

r0svd + cosul − vt
, s20d

so thatf40g

s2std = sYsr2std,u2std,vd =
KIstdSYsu2std,vd

Î2pr2std
s21d

FIG. 20. Branch angle as a function of notch length.
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=

KIstdSYSarctan
sinul

r0svd + cosul − vt
,vD

Î2pÎssinuld2 + fr0svd + cosul − vtg2
. s22d

Using the threshold condition for particle 2 we get

KIstdSYsu2std,vd
KIs0dSYs0,0d

=Î r2std
r0s0d

. s23d

Equations23d can be solved numerically in order to obtaint2.
Therefore, ift1, t2, straight propagation occurs; on the other
hand, if t1. t2, branching occurs, so this model allows quali-
tatively for branching.

B. Numerical estimations

The model described above is formulated in terms of the
stress field; however, with the help of the plane strain rela-
tionships it can be easily formulated in terms of the strain
field. The predictions of the model depend critically on the
values ofr0s0d andr0svd. In Fig. 21 we show the appearance
of the radial dependence ofg+sr ,u=0,vd, in the case
Ln=100, for three different values ofv: namely, v=0, v
=0.60, andv=0.65. Note that for the moving cracks, the
nonsingular terms are due to the strain field dynamicsf41g
and not to the constant-displacement boundary conditions.

These results show that, at high crack tip speed, the
g+sr ,u=0,vd curve does not change significantly upon an
increase of the tip velocity, because the curves forv=0.60
andv=0.65 coincide with each other up to quite a long dis-
tance from the tip. Therefore, we can make some estimations
by taking the values ofr0s0d andr0svd from fits of the curves
shown in Fig. 21, in the region close to the crack tip, to the
form

g+sr8,u = 0,vd =
c1

Î2psr8 + r0svd − 1d
. s24d

The results of these fits are summarized in Table III.
In Fig. 22 we plot the dependence oft1 sdotted lined andt2

sdashed lined on the tip velocity using the values given in
Table III for v=0.65. For values of the tip speed so that

Vtip,0.675, only the point at the tip—i.e.,P1—goes above
the disconnection threshold, because the equation determin-
ing t2 does not have a real solution. Therefore branching can
not happen and straight propagation is predicted. In the in-
terval 0.675øVtipø0.678, the pointP2 can go above thresh-
old, but t1, t2, so that straight propagation is predicted too,
although the difference between the values ofg+ at pointsP1
and P2 is very small and, consequently, small amounts of
disorder might trigger branching. AtVtip=0.680,t2 becomes
smaller thant1 and, therefore, branching is predicted. This
critical value of the tip velocity for branching compares very
well with the one obtained in our simulationssVcrit =0.675d.

For the purposes of illustrating the behavior of this model
we also show in Fig. 22 the effect of small changes inr0svd.
The solid line in Fig. 22 corresponds to a value of
r0svd=0.175 while the dot-dashed line corresponds to
r0svd=0.21. By increasingr0svd the critical branching veloc-
ity decreases and the region in which branching is expected
widens.

The interplay betweent1 and t2 is better understood by
looking at Fig. 23, where we show the evolution ofg1

+ andg2
+

with time as the tip moves forward at the prescribed velocity.
The curves in Fig. 23 correspond to the caser0svd=0.175 for
which the critical branching velocity isVcrit =0.62. For
VtipøVcrit, the curve corresponding tog2

+std has a maximum
which lies below the value of the disconnection thresholdgc

+.
Therefore, branching can never occur for this range of tip
velocities. On the other hand, if the tip velocity is above the
critical value for branching, the maximum of the curve cor-
responding tog2

+std is already above the threshold value for
disconnection. Moreover, the curveg2

+std crosses the value
gc

+ beforeg1
+std does, so that branching occurs.

For the sake of completeness, we have also looked at the
effect of the Poisson coefficient. In Fig. 24 we show the

TABLE III. Results of fitting the curves in Fig.s21d to Eq.
s24d.

v c1 r0

0.0 0.081 0.27

0.60 0.061 0.15

0.65 0.060 0.14

FIG. 21. Snapshots of the radial dependence ofg+su=0,vd, in
the caseLn=100, at the times in which the tip velocity is, respec-
tively, v=0 ssquaresd, v=0.60 scirclesd, andv=0.65 strianglesd.

FIG. 22. Dependence of the disconnection timest1 andt2 on tip
velocity for different values ofr0svd. Magnitudes in selected units.
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results obtained when setting the valuen=0.33, much closer
to the experiments in glass or PMMA, andr0svd=0.175. Evi-
dently, increasing the value of the Poisson coefficient dra-
matically lowers the values of the velocity branching thresh-
old.

VI. DISCUSSION

First of all, let us emphasize again that the present imple-
mentation of both the fracture criterion and lattice topology
allows for a full conservation of the mirror symmetry with
respect to the middle vertical plane. Therefore, all of the
simulations reported here are strictly under mode-I loading.

Effects of the lattice topology close to the crack tip are
apparent, however, as shown also in Ref.f25g. These effects
appear as deviations of the radial dependence of the strain
field close to the tip from the intermediate distance behavior.
In this sense, the radial dependence of the highest eigenvalue
of the strain tensor atu=0 is not of great help as a check for
the predictions of linear elastic fracture mechanicssLEFMd,
because it shows strong nonsingular contributions due to the
particular loading configuration, which consists in applying
constant displacement at the lateral plate boundaries. Con-
versely, the lowest eigenvalue yields a very nice agreement

with the predictions of LEFM, at least in static conditions
and slightly awaysthree to four lattice spacingsd from the
crack tip. The possibility of reconstructing the full two-
dimensional structure of the strain field, although in a re-
stricted distance range, just by taking three parameters from
the radial dependence fits shows that the angular structure of
the strain field is very well represented by the Irwin-Williams
solution. Extending the range of the comparison is not pos-
sible because the Irwin-Williams solution pertains to the situ-
ation in which the loading configuration corresponds to con-
stant stress at the boundaries of an infinite plate.

Several aspects of the dynamics deserve some comments.
For instance, the effect of notch length in the dynamics of the
crack can be summarized as follows. Short notches give rise
to a structure of the strain field with comparatively smaller
strain differences across the plate. This results in dynamical
behavior, with high crack tip acceleration, which strongly
depends on notch length and which is strongly sensitive to
disorder and/or wave propagation. Conversely, long notches
sLn*Lx/2d show a behavior independent of notch length be-
cause they are close to the model problem situation of a
crack in an infinite strip. In this case, the strain differences
across the plate are large and, therefore, they are weakly
sensitive to perturbations such as disorder and/or wave
propagation, unless the crack tip kinematics makesg2

+ to
become close togc

+.
The speed of the cracks, when in straight motion, is larger

than usually found in experiments with glass or PMMA. In
the Griffiths picture of fracture, the crack velocity depends
on the relationship between energy flow to the tip and energy
dissipation at the tip due to crack lip surface creation. Energy
flow to the tip is generally ruled by the dynamics of the
strain field while, in this model, the energy dissipation at the
tip is implicitly determined when the fracture criterion is
specified, because the fracture criterion sets the crack lip
length created in each disconnection event. Therefore, in this
model, the energy dissipation at the tip is not easy to change
in a controlled way unless friction is included. However, it is
clear from these simulations that crack lip surface creation is
not the only mechanism that plays a role in the selection of
the crack velocity. Indeed, surface waves have been shown
here to have a main role in the time history of the tip velocity
and, most importantly, in the appearance of the second
branching instability.

It must be kept in mind that the nearest-neighbor discreti-
zation scheme reported here is unstable for values of the
Poisson ratio strictly higher than 1/4. Therefore, a full com-
parison of velocity values with experiments in glass or
PMMA, for which n.0.33, cannot be made. However, the
same optimization scheme used here to derive the equations
ruling the dynamics of the lattice sites can be carried out
under the assumption of a next-nearest-neighbor interaction.
Preliminary numerical results show that this approach elimi-
nates the scheme’s stability problem aboven=1/4. Exploit-
ing that scheme would be the object of future work.

In this discrete model, two radically different branching
instabilities may appear: one driven by the changes in the
strain field caused by the kinematics of the effective singu-
larity and another one triggered by the surface waves pro-
duced in the disconnection events, which travel through the

FIG. 23. Comparison of curvesg1
+std andg2

+std for values of the
tip velocity slightly below and above the branching velocity thresh-
old for the caser0svd=0.175.

FIG. 24. Illustration of the tip velocity dependence of discon-
nection timest1 and t2 for a plate of a material withn=0.33 and
with the same radial dependence ofg+ fr0svd=0.175g.
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crack lip and are reflected back towards the crack tip. In the
plates simulated here, the crack velocities are not small
sVtipù0.4VRd and the kinematic instability occurs before the
surface wave induced instability can take place. This sce-
nario may change easily, for instance, in the case the straight
propagation velocities were smaller. In such a case, kine-
matic branching might be forbidden and the backscattered
surface wave would have the time to catch up with the crack
tip again. This would be a much closer scenario to experi-
mentsf13g. Moreover, in this later scenario, disorder or re-
flected waves can trigger attempted branching before the sur-
face wave induced branching occurs provided thatg2

+ is
below but close togc

+.
However, it is an experimental fact that in PMMA cracks

with very long initial notches may travel through the plate at
low constant velocity, without branching. In such cases, ki-
nematic branching should be forbidden and back-reflected
surface waves should certainly catch up with the crack tip
without producing branching. This type of behavior has not
appeared in our simulations. Several mechanisms may be
conjectured as ways of solving this model flaw. One is, as
stated before, including some dissipation in the model; an-
other one is correcting the “excessive brittleness” of the
modelstoo much energy is released suddenly when a node is
disconnectedd by means of including some cohesive zone at
the crack tip.

Another issue to be considered here is the effect of the
spatial resolution in the simulations. The simulations show
that increasing the spatial resolution does not affect the dy-
namics, with the only change of allowing for a more precise
study of the effect of surface waves on the crack tip kine-
matics. This might be surprising because one might naively
think that improving the spatial resolution close to the sin-
gularity would result in larger strain differences across the
plate as points closer to the singularity should “feel” clearly
the 1/Îr divergence. This in turn should modify the above-
mentioned distinction between short-notch and long-notch
consequences as far as sensitivity to disorder and/or wave
motion is concerned. This is not so because being correct
that strain differences across the plate increase with the spa-
tial resolution, it is also true that the energy released in each
disconnection event correspondingly increases with the spa-
tial resolution, yielding an unchanged dynamical scenario.

In our simulations, we have a fracture criteria on the
maximum eigenvalueS+su ,vd of the strain field. It is impor-
tant to realize that the angular structure ofS+su ,vd of the
Yoffe solution by itself cannot explain the branching insta-
bility observed in the simulations. In a continuum description
represented by the Yoffe solution the structure ofS+su ,vd
presents a lateral maximum of higher amplitude than
S+s0,vd at all velocities but very high onesssee Fig. 4.3 of
Ref. f5gd. Then, a fracture criterion onS+su ,vd would imply
that branching occurs even at zero crack tip velocity because
of the presence of maxima at<60° in S+s0,v=0d. We have
shown that the actual node values of the stress and strain
fields do not differ much from those given by Yoffe. Never-
theless, branching is observed only beyond a certain critical
velocity. We have explained this fact by assuming that the
singularity of the stress field moves at the crack tip velocity

and looking at the actual values of the strain field at the
discrete node locations. The key point in this kinematic ex-
planation is the analysis of the disconnection times of the
nodes ahead and aside of the crack tip. Above certain critical
crack tip velocity, the nodes aside of the crack direction have
a shorter disconnection time than the node ahead, and
branching occurs. It is the combined action of the angular
structure ofS+su ,vd, the radial dependence of the stress field
singularity, and the lattice discreteness which leads to
branching for tip velocities above a critical one.

One comment about the model for the kinematic branch-
ing instability is in order here. We remark that all of the
expressions used in the formulation of the model are made
dimensionless with a characteristic length scale that is pre-
cisely the lattice spacing. Therefore, these expressions are
valid at any spatial resolution, and that means that the critical
tip speed values obtained with this analysis are valid for no
matter how small the spatial resolution would be.

Understanding, even qualitatively, the values of the
branching angle and the competition between parallel run-
ning cracks, appearing in the cases of plates with long
notches, is still work to be done. At present we do not have
an understanding of the values obtained for the branching
angle. However, we point out that for long initial notches the
values obtained coincide with the experimental ones within
the error barsf8g. This fact suggests that, in the case of
kinematic branching, the values of the branching angle
should be mainly determined by the structure of the strain
field f19g. The agreement of the values of the branching
angle obtained in this work with the theoretical value ob-
tained from an analysis of the strain field under the principle
of local symmetryf19g is quite remarkable. A direct assess-
ment of the principle of local symmetry in our simulations
would be very desirable. However, such an assessment is
difficult to perform. First the branched cracks do not follow
lattice directions and the nodes that get disconnected are not
aligned, creating an alternating pattern that could be misin-
terpreted as a mode-II component. Second, the presence of
sound waves generated by the disconnection events strongly
perturbs the strain field near the tips.

VII. CONCLUSIONS

In this work we have reported the results of a series of
simulations of a crack propagating through a discrete model
of a brittle elastic solid. We show that, when the fracture
criterion is implemented over nodes, instead of over bonds,
the symmetry properties of the overall crack dynamics im-
prove considerably. The implementation of the fracture cri-
terion that we use here is the simplest one, but it fully avoids
the possibility of mode-II perturbations. As a consequence
the influence of the lattice directions on crack tip motion is
dramatically reduced.

We have conducted a series of simulations to study the
effect of notch length on the crack dynamics. Two kinds of
behavior appear. Short-notch cases show strain fields with
relatively small strain differences across the plate, which
makes them highly sensitive to wave motionsand disorder,
presumablyd, giving rise to highly branched patterns. On the
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other hand, long-notch simulations show relatively high
strain differences across the plate, giving smooth patterns.
This happens because the crack dynamics becomes relatively
insensitive to wave motion or disorder, unless the crack tip
kinematics makes thatg2

+ is slightly belowgc
+.

During straight propagation the crack tip velocity shows
an overall increasing trend with appreciable ripple. A close
study to the crack tip acceleration shows strong oscillations
that can be related to surface wave emission at the discon-
nection events.

Branching instabilities of two different types have been
identified. In these simulations the first branching instability
is due to the evolution of the strain field coupled to the crack
tip motion. In the short-notch cases, the second branching
instability can be unambiguously ascribed to the arrival to
the crack tip of the surface wave pulse generated at the first
disconnection event, reflected back at the upper boundary of
the plate.

Finally, we also propose a qualitative kinematic model
that allows for an explanation of the branching mechanism.
The model considers a discrete elastic medium whose strain
field would coincide with the corresponding plane strain field

obtained from Yoffe’s moving crack solution. Setting up a
threshold value for disconnection in such a model is equiva-
lent to consider that an “effective singularity” lags behind the
crack tip a distancer0 that is a model parameter. By analyz-
ing the disconnection times of the nodes ahead and aside of
the crack tip, we have shown that the evolution of the strain
field, under a constant velocity motion of the effective sin-
gularity, can induce branching. Indeed, if the values of the
model parameters are taken from appropriate fits to the simu-
lation data, the critical tip velocity predicted agrees remark-
ably well with that found in the simulations. The analysis of
the disconnection times might be a useful tool to understand
the branching phenomenology in other discrete models of
brittle fracture.
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